An Efficient Extreme Learning Machine Based on Fuzzy Information Granulation
نویسندگان
چکیده
منابع مشابه
An Efficient Extreme Learning Machine based Intrusion Detection System
This paper presents an intrusion detection technique based on online sequential extreme learning machine. For performance evaluation, KDDCUP99 dataset is used. In this paper, we use three feature selection techniques – filtered subset evaluation, CFS subset evaluation and consistency subset evaluation to eliminate redundant features. Two network traffic profiling techniques are used. Alpha prof...
متن کاملEfficient smile detection by Extreme Learning Machine
Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning M...
متن کاملInformation Granulation via Neural Network-based learning
This paper concerns with an information granulation approach that is based on neural network learning. The approach involves three key phases. First, information granules are induced in the space of numerical data via a soft competitive learning algorithm with the ability to automatically determine the granularity level needed to properly model the data. Then, information granules are fuzzified...
متن کاملExtreme learning machine based supervised subspace learning
This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by t...
متن کاملLeast-squares temporal difference learning based on extreme learning machine
This paper proposes a least-squares temporal difference (LSTD) algorithm based on extreme learning machine that uses a singlehidden layer feedforward network to approximate the value function. While LSTD is typically combined with local function approximators, the proposed approach uses a global approximator that allows better scalability properties. The results of the experiments carried out o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Online and Biomedical Engineering (iJOE)
سال: 2015
ISSN: 2626-8493
DOI: 10.3991/ijoe.v11i8.4884